61 research outputs found

    Role of the HAMP Domain Region of Sensory Rhodopsin Transducers in Signal Transduction

    Get PDF
    International audienceArchaea are able to sense light via the complexes of sensory rhodopsins I and II and their corresponding chemoreceptor-like transducers HtrI and HtrII. Though generation of the signal has been studied in detail, the mechanism of its propagation to the cytoplasm remains obscured. The cytoplasmic part of the transducer consists of adaptation and kinase activity modulating regions, connected to transmembrane helices via two HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, phosphatases) domains. The inter-HAMP region of Natronomonas pharaonis HtrII (NpHtrII) was found to be α-helical [Hayashi, K., et al. (2007) Biochemistry 46, 14380−14390]. We studied the inter-HAMP regions of NpHtrII and other phototactic signal transducers by means of molecular dynamics. Their structure is found to be a bistable asymmetric coiled coil, in which the protomers are longitudinally shifted by 1.3 Å. The free energy penalty for the symmetric structure is estimated to be 1.2−1.5 kcal/mol depending on the molarity of the solvent. Both flanking HAMP domains are mechanistically coupled to the inter-HAMP region and are asymmetric. The longitudinal shift in the inter-HAMP region is coupled with the in-plane displacement of the cytoplasmic part by 8.6 Å relative to the transmembrane part. The established properties suggest that (1) the signal may be transduced through the inter-HAMP domain switching and (2) the inter-HAMP region may allow cytoplasmic parts of the transducers to come sufficiently close to each other to form oligomers

    Raman Scattering:From Structural Biology to Medical Applications

    Get PDF
    This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed

    Structure and phase transitions of DMPC multilamellar vesicles in the presence of Ca2+ ions

    No full text
    Results obtained via small-angle neutron scattering studies of the influence of calcium ions on the structure and phase transitions of phospholipid membranes are presented. The main phase transition temperature of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (1 wt %) multilamellar vesicles is demonstrated to increase by more than 1°C even when the calcium-ion content of the solution is low (0.1 mM). Detailed analysis of the multilamellar vesicles transition between “bound” and “unbound” state indicates the continuous character of the investigated process in both liquid and gel phases. The critical Ca2+ ion concentrations which initiate the destruction of the multilamellar structures and the formation of unilamellar vesicles are found to be ~0.3 mM in the gel and ~0.4–0.5 mM in the liquid-crystal phases during heating and ~0.5 mM in the phases under study upon cooling

    Sensory Rhodopsin II: Signal Development and Transduction

    No full text
    International audienc

    Rhodopsin Channel Activity Can Be Evaluated by Measuring the Photocurrent Voltage Dependence in Planar Bilayer Lipid Membranes

    No full text
    The studies of the functional properties of retinal-containing proteins often include experiments in model membrane systems, e.g., measurements of electric current through planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one of the membrane surfaces. However, the possibilities of this method have not been fully explored yet. We demonstrated that the voltage dependence of stationary photocurrents for two light-sensitive proteins, bacteriorhodopsin (bR) and channelrhodopsin 2 (ChR2), in the presence of protonophore had very different characteristics. In the case of the bR (proton pump), the photocurrent through the BLM did not change direction when the polarity of the applied voltage was switched. In the case of the photosensitive channel protein ChR2, the photocurrent increased with the increase in voltage and the current polarity changed with the change in the voltage polarity. The protonophore 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole (TTFB) was more efficient in the maximizing stationary photocurrents. In the presence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP), the amplitude of the measured photocurrents for bR significantly decreased, while in the case of ChR2, the photocurrents virtually disappeared. The difference between the effects of TTFB and CCCP was apparently due to the fact that, in contrast to TTFB, CCCP transfers protons across the liposome membranes with a higher rate than through the decane-containing BLM used as a surface for the proteoliposome adsorption

    An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin.

    Get PDF
    International audienceHeterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å

    On the Role of Normal Aging Processes in the Onset and Pathogenesis of Diseases Associated with the Abnormal Accumulation of Protein Aggregates

    No full text
    Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies. We also analyze how manifestations of aging (mitochondrial dysfunction, dysfunction of signaling systems, changes in the genome and epigenome) facilitate pathogenesis of various proteinopathies either directly, by increasing the propensity of key proteins for aggregation, or indirectly, through dysregulation of stress responses. Such analysis might help in outlining approaches for treating proteinopathies and extending healthy longevity

    Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form.

    Get PDF
    International audienceBacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein's fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies
    corecore